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Abstract: 
 
In this paper operational results of CENER prediction 
model are presented. This model has been developed 
at CENER and it is specially designed for complex 
terrain. The prediction model includes a complete set 
of models that ranges from the synoptic scale to the 
local scale of the wind farm:  
• MM5 model reads as inputs the status and 

expected evolution of the atmosphere at 
synoptic scale, from global or regional 
meteorological models (like AVN, HIRLAM, 
etc); and forecasts all the relevant atmospheric 
variables like wind speed, direction and air 
density at different domains. The nesting 
capabilities of MM5 allow increasing the spatial 
resolution of the domains in a hierarchical way 
up to 1 km2 around the wind farm. The effects 
of the spatial resolution and nesting options 
have been tested at different forecast horizons. 

• In order to include smaller scale phenomena 
(smaller than 1 km2), a CFD model has been 
developed to be coupled with MM5. This model 
reads the wind predictions of MM5 for the area 
of the wind farm, and transforms them into 
specific wind forecasts for wind turbines or 
groups of wind turbines. This model can 
increase the spatial resolution of the wind 
forecasts up to the scale of meters. 

• A final MOS correction is included in order to 
detect and remove systematic errors that could 
appear in the previous process. This module is 
based on an automatic selection of input 
variables, principal components regression and 
fuzzy logic. 

• Wind forecasts are transformed into power 
production forecasts by the wind farm power 
curve statistical module. Different sets of power 
curves are calculated considering wind direction 
and air density. Fuzzy logic models are 
compared versus simple binning models. 

• In order to improve the very short tem forecasts 
(up to 10 hours ahead), CENER prediction 

model includes a time series statistical 
forecasting module. This module is based on 
autoregressive techniques that allow modelling 
the persistence of the wind and its effect on the 
forecasted power production.  

 
The prediction model has been operational since the 
beginning of 2002 and it has been running on-line 
since June 2003 at different wind farms in Spain, 
mainly located in complex terrain. The paper shows 
the results of the prediction model for some of the 
wind farms. 
 
Keywords: wind power prediction, forecasting, 
power curve, fuzzy logic, MM5, time series 

 

1 Introduction 

The use of wind power forecasting tools is becoming 
a need, especially in the countries with an important 
wind energy capacity installed. Prediction tools can 
help wind energy to compete with the conventional 
energy sources in a liberalized energy market 
context. In general terms, according to the basic rules 
of the market the deviations of the scheduled 
production have a penalty. The unknown fluctuations 
of the wind energy production are thus an important 
obstacle for wind energy producers to enter in the 
energy market.  
 
From the point of view of the system operators the 
unpredicted variability of the wind farms production 
reduces the efficiency of the system, with an increase 
in the price of the kWh. 
 
Another problem related to the unpredicted 
variability of the wind is the efficient use of the 
electrical network. Prediction tools are of special 
interest in areas with a high concentration of wind 
farms and a limited capacity of the network, the 
prediction of the energy production for the wind 
farms connected to a certain node can be used by a 

 



grid manager to optimize the load of the network, 
minimizing the loses of energy. 
 
In this context, the accuracy of the predictions is a 
critical point that determines the value of the 
forecasts. In the case of Spain, the majority of the 
wind farms are located in complex terrain. In general, 
wind forecasting in complex terrain is more difficult 
than in flat areas. In complex terrain local effects 
(topography and thermal effects) play an important 
role that cannot be solved completely by the 
meteorological forecast models.  
 
One of the main limitations of numerical weather 
predictions is the spatial resolution of the grid that is 
used to solve the equations.  This limitation causes 
that the effects having a characteristic dimension 
(spatial and temporal) smaller than the grid resolution 
cannot be solved explicitly. In the case of wind 
forecasts in complex terrain, the features of the 
terrain surrounding the area of the wind farm modify 
significantly the wind flow, and are not adequately 
considered in numerical weather predictions. 
 
2 Description of the test case 

 

 

 

 

 

 

 

Figure 1. 3D map of Alaiz wind farm area. 

Figure 1 shows the terrain characteristics where Alaiz 
wind farm is installed. The prediction model has been 
tested in several wind farms in Spain, for this paper 
Alaiz wind farm has been selected as test case. Alaiz 
is a mountainous area with steep slopes and big 
changes in the altitude. Figure 2 shows the spatial 
distribution of the ruggedness index (RIX) [1], this 
index represents the percentage of slopes steeper than 
30%. It can be seen in figure 2, the RIX varies 
between 10% and 38%, being a clear indication of 
the high level of complexity of the terrain. Alaiz 
wind farm is situated in Navarra at the North-East of 
Spain, owned by Energía Hidroeléctrica de Navarra 
(EHN). It has 50 wind turbines (660 kW rated 
power). The average height above sea level is 1050 

m. 
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Figure 2. Spatial distribution of the ruggedness index 
(RIX).  

Wind and power forecasts have been produced for 
the period 23/05/2003 – 31/10/2003. The wind 
measurements used for the test case come from a 
meteorological mast located in Alaiz wind farm. The 
anemometer and vane are located at 55m a.g.l. 
 
 
3 Description of the prediction 
model Wind farm 

CENER prediction model has been designed to 
improve the quality of the wind and power 
production forecasts especially in complex terrain. 
 
The prediction model has a modular design, 
including physical modules (MM5 and CFD) and 
statistical modules (MOS, wind farm power curve 
and time series forecast).  
 
The prediction model uses as input data the 
numerical weather predictions (NWP) given by a 
global or regional model and the wind speed, 
temperature, pressure and power production 
measured at the wind farm. The mesoscale 
meteorological model MM5 uses the NWP as initial 
and boundary conditions and generates a high 
resolution wind forecasts in the area of the wind farm 
reaching up to 1 x 1 km2 resolution. The CFD 
module reads the forecasted wind speed and direction 
of MM5 at different nodes and performs a very high 
resolution simulation of the wind flow over the wind 
farm, reaching a spatial resolution of meters. An 
advanced Model Output Statistics module (MOS) 

0 

 

/10



improves even more the wind forecasts detecting and 
removing the systematic errors through a powerful  
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. CENER prediction 
model structure. 
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statistical process that is based on historical wind 
predictions and simultaneous data. Finally, the wind 
forecasts are transformed into power forecasts 
through the wind farm power curve module. In 
parallel, the time series module generates a forecasts 
based only on wind and power productions 
measurements. 

 
 
independent forecast based on wind and power 
measurements of the wind farm; this statistical 
forecast reduces the errors for the first hours taking 
advantage of the persistence of the wind. Figure 3 
shows CENER prediction model structure. 
 

 
3.1 MM5 

MM5 is a numerical short-time prediction model; it is 
a well known model amongst meteorological 
modellers. 
  
The version used corresponds to the Fifth-Generation 
of the known Mesoscale Model, it was developed 
between the University Pennsylvania State (PSU) and 
the National Center for Atmospheric Research 
(NCAR) from United States. The main aspects that 
can be relevant for the generation of wind forecasts 
are: 
 

 Capability of multiple nesting with up to nine 
domains running at the same time and 
completely interacting in two-way. Two-way 
interaction means that the nest’s input from 
the coarse mesh comes via its boundaries, 
while the feedback to the coarse mesh occurs 
over the nest interior. 

 
 Non-hydrostatic Dynamic Formulation, 

which adds vertical acceleration that 
contributes to the vertical pressure gradient. 
This characteristic is especially important for 
wind simulations in complex terrain, where 
the vertical acceleration of the wind plays an 
important role. 

  

 Automatic initialization with bucket 
meteorological datasets (AVN global model, 
ECMWF global model, HIRLAM, etc.). And 
also MM5 allows four-dimensional data 
assimilation (FDDA) while the model is 
executed. Essentially FDDA makes the 
model run with forcing terms that “nudge” it 
towards the observations or analysis. 

 
 This model incorporates the recently 

developed parameterizations schemes for the 
physics process related with: atmospheric 
radiation, clouds, precipitation, turbulence, 
cumulus, convection and surface fluxes. 

 
The conditions used for the test case are: 
 

 The wind farm’s topography is represented in 
a terrain file generated at NCAR using a 
USGS (United States Geological Survey) 
database for terrain and land use. The 
resolution of the source terrain and land use 
data are: 111 Km, 56 Km, 19Km, 9Km, 4km 
and 1Km. 

 
 Boundary conditions such as horizontal 

winds, temperature, pressure and moisture 
fields depend on a global model used to 
initialize MM5. In this case, the AVN global 

 



model has been chosen, with 6 hour data and 
1ºx1º grid. 

 
 For these calculations, four domains have 

been nested, in order to obtain a fine grid in 
the last domain near to 3x3 km2. These 
domains are centred in the Alaiz’s wind farm. 
See the figure 4. The last domain has a 
dimension of 49x49 nodes. 

 
 The four domains are nested as two-way. The 

nesting ratio is 3:1 between domains, in order 
to guarantee stability and convergence in the 
equations resolution.  

 
 The model has been vertically interpolated in 

23 sigma levels. Sigma surfaces near the 
ground follow the terrain, and the higher-
level sigma surfaces tend to approximate 
isobaric surfaces. 

 
With the above conditions, the model has been 
run once per day for the test case during the 
period 23/05/2003 – 31/10/2003, using the 
boundary conditions from AVN model at 00 
hours run. The results obtained have been 72 
prediction horizons, each day. 

 
Figure 4. Four nested domains centred in Alaiz’s 
Wind Farm. 

 
Figure 5. Simulating the wind profile for Alaiz’s wind 
farm. Sample of vertical profile calculated by MM5: 
pressure levels, temperature profile and wind vector 
variations with height. 

The results of the MM5 model for Alaiz test case are 
presented in the MOS section.  
 
3.2 CFD 

The simulation of the wind flow over the area of the 
wind farm is carried out by a CFD model developed 
by CENER. This simulation takes into account the 
topography and roughness with a very high spatial 
resolution (some meters).  

This CFD model has been coupled with MM5 and it 
takes as inputs the output of MM5 in the last domain 
(3 x 3 km2), the CFD model modifies the wind 
prediction for the area given by MM5. 
 
The results of this model are presented in a different 
paper [2] 
 
3.3 MOS 

The MOS module of the prediction model is designed 
to improve the wind forecasts statistically. Part of the 
errors that affect the forecasts are systematic, this 
means that they can be detected statistically. This 
MOS module is based on a principal components 
regression with a self-tuning algorithm. 
 
 

 



 
Figure 6: MOS structure. 
 
A training period has been determined in order to fit 
MOS algorithms, and an independent validation 
period has been used to evaluate the results. This 
procedure avoids the overfitting problem. The training 
period was defined as the last three weeks of each 
month, and the validation period is the first week of 
each month (five weeks in total). All the results 
presented here correspond to the validation period. 
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Figure 7. Automatic selection of MM5 variables for 
the MOS corrections. Evolution of rmse and R2 of 
wind speed forecasts for the 12 hours horizon. 
 
After the MOS correction an improved wind forecasts 
is produced. The forecasts are made daily using AVN 
00 run as input data to MM5, the forecast horizons are 
+01 to +72 hours. 
 
The previous figure shows the rmse (root mean square 
error) and R2 (determination coefficient) evolution of 
the wind forecasts, in the automatic selection of MM5 
variables for the MOS. This process searches the 
optimum set of MM5 output variables that allow the 
MOS module to detect and remove the systematic 
errors of the wind forecasts. The final set of variables 

gives the minimum value of the rmse for the wind 
speed forecasts. 
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Figure 8. Rmse of wind speed forecasts obtained with 
MM5 and MM5+MOS for the validation period. 
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Figure 9. R2 of wind speed forecasts obtained with 
MM5 and MM5+MOS for the validation period. 
 
The previous graphs show the errors (rmse) and the 
determination coefficient R2 of the MM5 wind speed 
forecasts for the validation period, with and without 
the MOS corrections. It can be seen that the MOS 
corrections improve significantly the forecasts, 
reducing the rmse and increasing the R2 for every 
forecast horizon. 
 
MM5 performance varies for the different horizons, 
since there is a single run of the model per day; this 
means that the diurnal variations of the wind are not 
yet well captured by MM5 in this area. Another 
explanation for the fluctuations of MM5 performance 
could be the effect of the boundary conditions over 
the last domain. MOS corrections smooth the 
fluctuations of the errors, giving a more homogeneous 
performance of the forecasts for all the horizons. 
 

 MM5  MM5+MOS  
RMSE wind 

speed forecasts 
4.9 m/s 1.9 m/s 

R2 wind speed 
forecasts 

0.27 0.75 

Table 1. Rmse and R2 of wind speed forecasts. 
MM5/MOS. Average values for all the horizons (1-72 
hours). Comparison between 10 m a.g.l. MM5 
forecasts and 55m a.g.l. wind measurements, for the 
validation period. 
 
A new MOS algorithm based on fuzzy logic is now 
under development. 
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3.4 Wind farm power curve 
Power curve modelling allows the prediction of wind 
farm power for a predicted wind speed and direction. 
This modelling has been carried out by means of 
different methods based on statistical tools. Except for 
the last one, all the methods obtain as a result a 
matrix-shaped power curve in which the mean output 
power is obtained entering a certain wind direction 
and wind speed.  
 
The interest of using different methods is based on the 
diverse situations related to available measurements at 
wind farms. In some cases there is only a global 
measure of power production and the wind at the 
meteorological station, in other cases there are more 
detailed measurements like individual power 
production and nacelle anemometers. The use of each 
method is conditioned on the availability of data, in 
general, the more data are available, the more accurate 
the results are because of the use of a more 
sophisticated model. 
 
Power production, wind speed, wind direction, 
temperature and pressure data measured at Alaiz wind 
farm have been used to fit the models. For all the 
methods, a training period has been determined during 
which the models are fitted, and an independent 
validation period has been determined. 
 
The general training period is Jan01-Aug01, and the 
general validation period is Sep01-Dec01. As these 
periods were conditioned to the availability of data, 
they changed in some cases. The number of wind 
speed bins and sectors for the definitive power curve 
was optimised during the modelling. 
 
In order to avoid the effect of air density over the 
measurements, all wind speed and output power data 
were corrected by means of atmospheric pressure and 
air temperature. This correction was made according 
to IEC 61400-12 that depends on the kind of 
regulation (pitch controlled: correction over wind 
speed or stall regulated: correction over output 
power). The turbines installed in Alaiz are pitch 
regulated. A normalised wind speed was calculated 
for a standard density of 1.225 kg/m3.  
 
Three parameters were used to evaluate power 
prediction during the validation period: 

• Determination coefficient (R2) 
• Root mean square error (rmse) 
• Relative error to the wind farm nominal 

power 
 
The tables 2 and 3 and figures 10 to 14 show for some 
models the training and validation period used as well 
as the three parameters explained above and the 

comparison between the real and the simulated power 
curves during the validation period. 
 
Five models were tested: 

• Model 1: Global power curve referred to the 
meteorogical mast. 

• Model 2: Global power curve referred to the 
nacelle anemometers. 

• Model 3: Cluster analysis to determine 
subsets of wind turbines. Cluster power 
curves referred to the nacelle anemometers. 

• Model 4: Turbine power curves referred to 
the nacelle anemometers. 

• Model 5: Fuzzy logic power curves. 
 
Model 1: Global power curve referred to the 
meteorogical mast. 
 
This model compares directly the global wind farm 
power to the normalised wind speed measured at the 
meteorological mast. All the measurements were 
filtered and singular points ignored in the analysis. A 
discretization for different number of sectors (4, 6, 8, 
12 and 16) and bin widths (0.5 and 1 m/s) was made 
so that optimum results were obtained for 16 sectors 
and a bin width of 0.5 m/s. No data was available for 
air pressure and temperature during June 01 so this 
month could not be included in the training period for 
this model and for the subsequent ones.  

 
Figure 10. Modelled and real power curves during the 
validation period for MODEL 1  
 
As it was said before, a global power curve in a matrix 
form (sectors in rows-wind speed bins in columns) 
was obtained using the specified training period and 
taking a mean value for the wind farm power 
corresponding to each sector and wind speed bin. This 
power curve was applied for the validation period 
(Sep01-Dec01).  
 
Model 2: Global power curve referred to the nacelle 
anemometers. 
 
This second model uses wind speed measured at the 
nacelle anemometers assuming this is a more 
representative measurement around the area. 

MODEL 1: ALAIZ WIND FARM POWER CURVE REFERRED TO TH ETEOROLOGICAL MASTE M
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MODEL 2: ALAIZ WIND FARM POWER CURVE REFERRED TO THE NACELLE ANEMOMETERS
Validation period (13/12/2001-31/12/2001)
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 Figure 11. Modelled and real power curves during the 
validation period for MODEL 2 
 
Unfortunately, these speeds were not measured in 
Alaiz since June 01 until 13 December 01 so that the 
validation period was reduced to the 2nd half of 
December 01.  
 
The available nacelle wind speeds were filtered, 
averaged for the whole period and synchronized again 
to the wind direction at the meteorological mast and 
global output power. The table 2 shows an 
improvement on the results. The validation period is 
not the same; therefore the comparison between model 
1 and the other ones could be considered only in a 
qualitative way. 
 
Model 3: Cluster analysis to determine subsets of 
wind turbines. Cluster power curves referred to the 
nacelle anemometers 

 
Figure 12. Dendrogram of the cluster analysis. 
 
Once tested that nacelle anemometers gave better 
results, a new method was employed in order to adjust 
different power curves to different turbine subsets. 
These subsets were formed by means of a cluster 
analysis applied to the power data of every turbine so 
that a group of turbines was obtained attending to 
production homogeneities criteria. Five turbine 
subsets were obtained after the cluster analysis based 

on hierarchical clustering and complete links 
(maximum distances between groups). Figure 12 
shows the dendrogram, it identifies the groups of wind 
turbines with homogeneous behaviour. From this 
point, a similar method to the one explained above 
was carried out so that five different power curves 
were developed from averaged nacelle wind speeds 
corrected by density, wind direction measured at the 
meteorological mast and cluster output power. These 
curves were applied during the validation period in 
order to get a  predicted power output for each cluster. 
By adding these cluster productions, a global wind 
predicted power was obtained and compared to real 
data. The table 2 below shows a new improvement in 
terms of rmse. 
 
Model 4: Turbine power curves referred to the nacelle 
anemometers 
 
An extreme case derived from the previous model 
consists of obtaining different power curves for every 
turbine instead of making groups, and applying the 
same process as explained above. This modified-
model 3 uses normalised nacelle wind speed, 
meteorological mast wind direction and turbine output 
power. Once filtered, these measurements produced a 
power curve for each turbine, which was applied later 
over the validation period.  

MODEL 4: ALAIZ WIND FARM POWER CURVE FROM TURBINE POWER CURVES
Validation period (13/12/2003-28/12/2003)
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Figure 13. Modelled and real power curves during the 
validation period for MODEL 4 
 
The output power for this period was added in order 
to get the global wind farm power so that it was 
compared to real output power. The table 2 below 
shows a new small decrease in rmse to 632 kW 
(1.91% of the nominal wind farm power). 
 
Model 5: Fuzzy logic power curves 
 
Fuzzy logic statistical tool defines input variables 
(normalised wind speed, wind direction and optionally 
other variables like air pressure and air temperature) 
and an output variable (wind farm power) by means of 
membership functions and finds proper transfer 
functions for relating them. As in the previous models, 
fuzzy logic method fits these functions for a training 

 



period attending to minimum rmse criteria and applies 
them during the validation period giving as a result 
the simulated power which is compared to real power.  

 
 
Figure 14: a. Evolution of rmse with the number of  
iterations, b. Predicted power vs measured power 
during the validation period, c. Modelled power curve 
vs real power curve during the validation period 
 
A certain number of iterations is needed to get the 
optimal fitting so that there is a critical number of 
them from which an improvement in terms of rmse is 
not expected (see figure 14a). As it can be observed, 
rmse between modelled and measured power is 
minimum at approximately 80 iterations. From this 
point, rmse fluctuates considerably and no 
improvement is observed. 
 

 
Figure 15: Transfer functions between wind speed-
direction and output power (fuzzy logic power curve) 
 
Fuzzy logic model was applied to two groups of data: 

• Wind farm data: averaged nacelle wind 
speed, meteorological mast wind direction 
and wind farm power. An only transfer 
function is obtained for this case (see figures 
14 and 15). 

• Wind turbine data: turbine nacelle wind 
speeds, meteorological mast wind direction 
and wind turbine power. Fuzzy logic is 
applied separately to every turbine to get 
different transfer functions one for each wind 
turbine. 
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Figure 14 also shows the time evolution for the 
modelled and measured power as well as their 
corresponding power curves during the validation 
period. The fitting for both series is accurate with a 
high degree of explanation of the measures by the 
model. 
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Sample The next tables show the results obtained for all the 

models for R2 and rmse. The results for the fuzzy 
logic model are separated for both groups of data 
explained above. 
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Model Nr. Training 
period 

Validation 
period R2 rmse 

(kW) 
rmse 
(%) 

1  Global 
power curve, 

met. mast 

Jan01-
May01 
Jul01-
Sep01 

Oct01-
Dec01 0.947 2863 8.65 

2  Global 
power curve, 

nacelle 
anemometers 

Jan01-
May01 

2nd half 
Dec01 0.995 851 2.68 

3 Cluster 
power curve, 

nacelle 
anemometers 

Jan01-
May01 

2nd half 
Dec01 0.996 673 2.11 

4 Turbine 
power curve, 

nacelle 
anemometers 

Jan01-
May01 

2nd half 
Dec01 0.996 632 1.91 

Table 2: R2 and rmse of the wind farm power curves 
(without prediction) for the linear models (1 to 4). 
 
Model Nr. 5 Tr. 

period 
Val. 
period 

Nr 
iterations R2 rmse

% 
5 0.9979 2.44 
20 0.9980 2.40 
70 0.9982 2.29 
100 0.9984 2.21 
200 0.9984 2.19 

Wind 
farm 

Jan01-
May01 

2nd 
half 
Dec01 

300 0.9984 2.19 
5 0.9982 1.78 
20 0.9982 1.78 
100 0.9989 1.56 
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Wind 
turb. 

Jan01-
May01 

2nd 
half 
Dec01 

300 0.9989 1.53 

 



Table 3: R2 and rmse of the wind farm power curves 
(without prediction) for the non-linear model (fuzzy 
logic). 
 
3.4.1 Power production forecasts 
The first wind farm power curve model has been 
coupled with MM5 and the MOS system to generate 
power production forecasts at the test case. 
 

 
Figure 16: Structure of the prediction model used to 
generate power production forecasts at the test case. 
 
Only the first model of wind farm power curve has 
been tested, this means that an improvement of the 
power production forecasts can be achieved when the 
fuzzy logic power curve model is tested. 
 
Figure 17 shows the rmse and R2 of the power 
production forecasts for the test case during the 
validation period. 
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Figure 17: R2 and rmse of the power production 
forecasts for every forecast horizon and for the 
validation period. 
 

 MM5+MOS+Power curve 1 
RMSE power 

production forecasts 
14% nominal power 

R2 power production 0.77 

forecasts 
Table 4: Rmse and R2 of power production forecasts. 
MM5+MOS+Wind farm power curve 1. Average 
values for all the horizons (1-72 hours). Results for 
the validation period. 
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Figure 18. Power production forecasts vs 
measurements during the validation period. +12 hours 
horizon. Pmed is measured power, Ppred is predicted 
power. 
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Figure 19. Power production forecasts vs 
measurements during the validation period. +24 hours 
horizon. 
 
The previous graphs represent the measured power 
production of the wind farm and the predictions of the 
model for the validation period. The measures are 
different because there is only one forecast per day. It 
can be seen that the tendencies are well captured by 
the model as well as the amplitude. 
 

3.5 Time series forecast 
A time series model is a useful tool in order to 
characterize and forecast the behaviour of any time 
series in the first prediction horizons. In these 
horizons normally this kind of model presents better 
results than the ones obtained based on a 
meteorological model as MM5.  
 
The models based on time series, both linear and non-
linear, predict the behaviour of the time series using 
only the empirical data. The absence of information 
about the evolution of the atmosphere at synoptic 
scale implies that the forecasts calculated with time 
series models are good only for short forecast 
horizons. For that reason, the optimum prediction can 
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be obtained by the combination of the meteorological 
forecasts (like MM5) and the time series ones. 
 
It is possible to use the time series models in two ways 
in order to generate power production forecasts: 
 

1. Forecast the wind field (velocity and 
direction) and use the wind farm power 
curves to transform wind the wind 
predictions into power production forecasts. 

2. Forecast the power production directly, using 
power production data as the main time 
series 

 
The time series model used is an ARMA model (1) 
considering the time series as stationary [6]. This is 
the general formulation of the model: 
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Where  

• { }jφ  corresponds to the autorregresive 
parameters, whose general order is p. 

• { }jψ  refers to the moving-average 
parameters, whose general order is q. 

•  is a white noise series, a random and 
independent series that is normally 
distributed. 

{ }ta

 
The orders of the best fitted model can be estimated 
through the shape of the autocorrelation function (2)  
and the partial autocorrelation function (3). 
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The following step in the process of fitting a model is 
the parametric estimation of the coefficients. They can 
be estimated resolving the Yule-Walker equations (4), 
taking into account the orders of the model. 
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An important step to adequate the model to the data is 
to look for possible hidden periodicities. Usually, it is 
made using Fourier analysis, either through 
harmonics analysis or through spectral analysis with 
variable window. But the wind velocity is so fluctuant 

than this kind of analysis is not sufficient to eliminate 
these fluctuations. In this case it is preferable to carry 
out a filtering of the data through non-parametric 
wavelets analysis. 
 
Wavelet Analysis is a relative new technique to 
analyse the time series in time-frequency domains. 
The wavelet analysis is able to detect the signal and 
the noise that are behind of the measured data. In this 
way, this kind of analysis is optimum to pre-process 
whichever time series previous to adjust a stochastic 
model. This methodology allows removing the noise 
from measurement data while preserving the features 
of the signal. [7, 8] 
 
After the wavelets filtering, two linear models ARMA 
have been estimated: one of them for the wind 
velocity data and the other for the wind farm power 
production. Both of them correspond to an 
autorregresive model of order 1. 
 
The parametric estimation has been carried out 
solving the Yule-Walker equations, the obtained 
optimized parameter for the wind velocity is 

9910.0=vφ , and the corresponding parameter for the 
wind power 9432.0=vφ . The best lineal model for 
the velocity is presented in (5), and it can be seen the 
equation (6) for the power. 
 

( ) ( ) (ttvtv )ε+−= 1 9910.0  (5) 

 
( ) ( ) (ttptp )ε+−= 1 9432.0  (6) 

The previous models have been used to estimate the 
forecasts for the different prediction horizons, from 1  
to 24 hours. The validation results are presented for 
each prediction horizon. In order to characterise the 
performance of the time series models, two parameters 
have been calculated for each model: the root mean 
square error (rmse), and the determination coefficient 

between the forecasts and the measured data. 2R
 
Figure 20 shows the rmse for the wind speed and 
figure 21 shows the relative rmse to the nominal 
power. As it can be seen, this error parameter 
increases with the forecast horizon, following a 
logarithmic function for both velocity and power. 
 
The determination coefficients between forecasts and 
measurements for the different horizons are shown in 
the figure 22; they decrease as the forecast horizon 
increases following an exponential function. It is also 
remarkable that the numerical value of this parameter 
is very similar for the wind speed predictions and 
power production predictions obtained by the time 
series models. 

 



 
 

 

Figure 20: Root mean square error between the AR 
model and wind speed measurements, forecast 
horizons between 1 and 24 hours. 

 

Figure 21: Root mean square relative to the wind farm 
nominal power, forecast horizons between 1 and 24 
hours. 

 

Figure 22: R2 coefficient of the fitted model for wind 
velocity and for the wind power, forecast horizons 
between 1 and 24 hours. 

According to the results obtained with the time series 
model, it can be seen that the first 3 or 4 hours 
forecasts are improved by the use of the time series 
when they are compared to the predictions calculated 
with MM5+MOS. 

 
3.6 Conclusions 

CENER prediction model has been tested in a 
complex terrain wind farm. All the modules included 
in the model have been tested individually, showing 
that a high quality power prediction can be obtained. 
 
The simulation of the wind farm can be done with a 
high level of precision by means of the developed 
power curve models. The error of this simulation is 
below 2% of the installed capacity. 
 
As it has been shown, the main error source is the 
wind forecast. MM5 predictions have been calculated 
using a nested domain configuration, being the last 
one a high resolution domain (3 x 3 km2) in order to 
improve the quality of the wind predictions. With this 
configuration and the use of the advanced MOS 
module, the errors of the wind speed forecasts are 
below 2 m/s in average (rmse). 
 
The combination of MM5 forecasts with the MOS 
corrections and the wind farm power curve gave an 
accurate prediction of the wind farm power 
production. The average error of the power production 
is 14% of the wind farm nominal power (rmse), with a 
high level of correlation (determination coefficient R2 
= 0.77 in average). 
 
The validation period used is relatively short (5 
weeks) although it is homogeneously distributed 

 



between June and October 2003, a larger validation 
period is presently under calculation. 
 
The results will be improved when the non-linear 
wind farm power curves will be used in conjunction 
with the MOS module. 
 
The time series module give an accurate prediction of 
both wind speed and power production for the first 
prediction horizons (up to 4 hours), with errors below 
10% of installed capacity and R2 above 0.9. The 
combination of the forecasts generated by the time 
series module, with the forecasts generated by 
MM5+MOS+Power curve provides the optimum 
power production forecast for each prediction horizon. 
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